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Abstract. The modulation evolution of a short localized optical pulse in a crystal belonging
to one of the classes̄42m, 4̄3m, 3m, 6mm, and with a non-vanishing second-order nonlinearity,
is considered. In(2+ 1) dimensions, the partial differential system accounting for it can be
reduced to the completely integrable Davey–Stewartson system, if some conditions are satisfied.
The first integrability condition represents a balance between the third-order Kerr effect and
the cascaded second-order nonlinearities, while the second condition is an equilibrium between
the dispersion and the kinetic factor of the electro-optic–optical rectification wave interaction.
For anomalous dispersion, the obtained Davey–Stewartson system is of the type I, that admits
localized soliton solutions. Lump solution, algebraically decaying in all directions, exist in any
case satisfying the above conditions.

1. Introduction

Multidimensional optical solitons are at the present time the subject matter of intensive
research and growing interest, for both fundamental and applicative reasons. The cascading
of second-order optical nonlinearities is one of the phenomena on which most hopes are
founded for realizing such effects. In(1 + 1) dimensions, the soliton theory rests on
the theory of the equations that are completely integrable through the inverse scattering
transform (IST) method. The most common and the most important of these equations is
the nonlinear Schrödinger (NLS) equation. In more than(1+ 1) dimensions, completely
integrable equations are rare. However, there exists an integrable(2 + 1)-dimensional
generalization of the NLS equation: the so-called Davey–Stewartson (DS I and DS II)
system. Localized soliton solutions have been found for this system (see the survey and
references in section 3), but to my knowledge, these mathematical solutions have never
been experimentally observed. Further, their occurrence in a given physical frame has never
been theoretically predicted. It is well known that partial differential systems with a form
analogous to the Davey–Stewartson one can describe the evolution of a short localized pulse
modulation in a quadratic optical medium [1]. The wave is stabilized by an interaction with
some d.c. field, through optical rectification and electro-optic effect. However, the derivation
of the model was achieved in a rather heuristic way. A recent paper [2] by Leblond presents
for the first time the derivation of such a model in(3+ 1) dimensions, taking into account
the tensorial structure of the susceptibilities, for some particular symmetry classes of crystals
(4̄2m or 4̄3m and 3m or 6mm). This enables us to give in this paper the conditions under
which localized solitons may arise in a thin sheet of some second-order nonlinear material
belonging to one of these classes.

This paper is organized as follows, first we recall the results of [2], second we summarize
the principal properties of the Davey–Stewartson system and then the reduction of the
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(3+ 1)-dimensional model to the Davey–Stewartson system, together with the integrability
conditions, is presented in section 4. Section 4.1 for the4̄2m and 4̄3m symmetry classes,
section 4.2 for the 3m class, and section 4.3 for the 6mm class which behaves as the 3m one,
with some slight changes. The results are then simplified using the ‘complete symmetry’
property of the susceptibilities, and commented on in section 5. A conclusion summarizes
these results and their interpretation.

2. A (3+ 1)-dimensional model that describes wave modulation in crystals

In a recent paper [2], we derived a(3 + 1)-dimensional system of partial differential
equations, that describes the evolution of a short localized optical pulse in a bulk sample
of some crystal with a nonzeroχ(2) susceptibility, far from the phase matching. Aside
from the self-modulation of the wave through both cascading and Kerr effect, it shows the
interaction between the wave and some d.c. field, or rather some solitary electromagnetic
wave, varying with the same spatial and temporal scales as the wave modulation. This
interaction, due to optical rectification and electro-optic effect, is essential, because it can
stabilize the pulse: in particular we show in this paper that, under certain (restrictive)
conditions, the(2 + 1)-dimensional evolution of the pulse obeys the Davey–Stewartson
system, which is completely integrable by the IST method, thus the pulse has all properties
of solitons, regarding stability, robustness, and interactions.

Further, our study takes into account the tensorial structure of the linear and nonlinear
susceptibilities. This is crucial for the above-mentioned results. Thus we consider
successively two particular structures of the nonlinear susceptibilities, corresponding to the
4̄2m and 3m symmetry classes of crystals. These classes are physically the most important
ones: the4̄2m class contains potassium dihydrogen phosphate (KDP) and all analogous
materials, but also contains others. All results obtained for the4̄2m class are also valid for
the 4̄3m class, to which for example, GaAs belongs. The 3m class is not less important
while the lithium niobate, which is nowadays the matter of extensive research, belongs to
it, together with other materials. The results valid for this class are also valid for the 6mm

class, which contains, for example, CdSe.
We use slow variables(τ, ξ, η, ζ ) (see [2] for their precise definition).ξ andη are the

transverse space variables,τ is the variable describing the shape of the pulse, andζ the
variable describing the evolution of this shape during the propagation of the pulse. Let us
call Ex andEy respectively thex andy components of the wavefield, andEx0 , Ey0 thex and
y components of the d.c. field or solitary wave. The model system obtained in [2] reads,
in the case of thē42m symmetry class:

[2ik∂ζ + β∂2
ξ + ∂2

η − kk′′∂2
τ ]Ex + (β − 1)∂ξ ∂ηEy

= D1Ex |Ex |2+D2Ex |Ey |2+D3(Ey)2Ex,∗ + E8Ey (1)

[2ik∂ζ + ∂2
ξ + β∂2

η − kk′′∂2
τ ]Ey + (β − 1)∂ξ ∂ηEx

= D1Ey |Ey |2+D2Ey |Ex |2+D3(Ex)2Ey,∗ + E8Ex (2)

[α(∂2
ξ + ∂2

η )+ ρ∂2
τ ]8 = λ(∂2

ξ + ∂2
η )(ExEy,∗ + Ex,∗Ey). (3)

The function8 is some combination of the zero harmonic componentsEx0 andEy0 , given
by

8 =
∫ τ

(∂ξEx0 + ∂ηEy0 ). (4)
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The constantsα and β give an account of the anisotropy, respectively at the frequencies
zero andω:

α = n2
o(0)

n2
e(0)

β = n2
o

n2
e

(5)

ρ measures the difference between the group velocityv of the fast oscillating wave and the
speed c

no(0)
of the solitary wave yielded by the rectified field.

ρ = 1

v2
− n

2
o(0)

c2
= (no + ωn′o)2− n2

o(0)

c2
(6)

Depending on the sign ofρ, equation (3) is either a Poisson equation or a wave equation. An
analogous phenomenon has been studied in ferromagnetic media, for relatively larger input
powers [3]. In the case whereρ < 0, the wave equation can describe the backscattering of
some shock wave, in a way that can be compared with the Tcherenkov effect, with longer
wavelengths, while the scattered solitary wave behaves smoothly whenρ is positive. This
ρ factor also appears in the denominator of the nonlinear constants of the NLS equations
derived from the same(3+ 1)-dimensional system. If it takes small enough values, it can
lead to large self-phase modulation, even if the correspondingχ(2) component is small. This
has already been noticed by Newell [1].

The interaction constants read as follows

D1 = −3ω2

c2
χ̂ (3)xxxx(ω, ω,−ω) (7)

D2 = 4ω2

c2

1

n2
e(2ω)

χ̂ (2)xzy(2ω,−ω)χ̂(2)zxy(ω, ω)+
4ω2

c2

1

n2
e(0)

χ̂ (2)xzy(0, ω)χ̂
(2)
zxy(ω,−ω)

−3ω2

c2
(χ̂ (3)xxyy(ω, ω,−ω)+ χ̂ (3)xyxy(ω, ω,−ω)) (8)

D3 = 4ω2

c2

1

n2
e(0)

χ̂ (2)xzy(0, ω)χ̂
(2)
zxy(ω,−ω)−

3ω2

c2
χ̂ (3)xyyx(ω, ω,−ω) (9)

E = −2ω2

c2

vn2
o(0)

n2
e(0)

χ̂ (2)xzy(0, ω) (10)

λ = 2

vn2
e(0)

χ̂ (2)xzy(ω,−ω). (11)

λ gives account for the interactionω + (−ω) −→ 0, which produces the zero harmonic or
mean-value termEx0 , Ey0 (the rectified field). The constantE accounts for the interaction
ω + 0 −→ ω of the latter with the fundamental, which is the electro-optic effect, and,
in addition to the third-order Kerr effect,D3 = −1

α
Eλ − 3ω2

c2 χ̂
(3)
xyyx(ω, ω,−ω) accounts for

the cascading of the two preceding interactions, while(D2 − D3) describes the cascaded
interactionsω + ω −→ 2ω and 2ω + (−ω) −→ ω.

For the 3m symmetry class, the obtained system reads as follows

[2ik∂ζ + β∂2
ξ + ∂2

η − kk′′∂2
τ ]Ex + (β − 1)∂η∂ξEy

= D1Ex |Ex |2+D2Ex |Ey |2+D3(Ey)2Ex,∗ + F1(Ex0Ey + Ey0Ex)

+F2Ex
∫ τ

(∂ξEx0 + ∂ηEy0 )

+F3Ex
∫ τ

[∂ξ (ExEy,∗ + EyEx,∗)+ ∂η(|Ex |2− |Ey |2)] (12)
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[2ik∂ζ + ∂2
ξ + β∂2

η − kk′′∂2
τ ]Ey + (β − 1)∂η∂ξEx

= D1Ey |Ey |2+D2Ey |Ex |2+D3(Ex)2Ey,∗ + F1(Ex0Ex − Ey0Ey)
+F2Ey

∫ τ

(∂ξEx0 + ∂ηEy0 )

+F3Ey
∫ τ

[∂ξ (ExEy,∗ + EyEx,∗)+ ∂η(|Ex |2− |Ey |2)] (13)

[α∂2
ξ + ∂2

η + ρ∂2
τ ]Ex0 + (α − 1)∂η∂ξEy0 = (λ1∂

2
ξ + λ3∂

2
τ )(ExEy,∗ + EyEx,∗)

+λ1∂ξ ∂η(|Ex |2− |Ey |2)+ λ2∂ξ ∂τ (|Ex |2+ |Ey |2) (14)

[∂2
ξ + α∂2

η + ρ∂2
τ ]Ey0 + (α − 1)∂η∂ξEx0 = (λ1∂

2
η + λ3∂

2
τ )(|Ex |2− |Ey |2)

+λ1∂ξ ∂η(ExEy,∗ + EyEx,∗)+ λ2∂η∂τ (|Ex |2+ |Ey |2). (15)

The constants are given in appendix A, formulae (48)–(59).
Both systems (1)–(3) and (12)–(15), which describe the evolution of a three-dimensional

pulse in a bulk sample of some material belonging to the4̄2m class, or to the 3m class
respectively, are expected to yield the NLS equation:

iA∂ζf + B∂2
Xf + Cf |f |2 = 0 (16)

when reduced to(1+ 1) dimensions, and a single polarization. However, this reduction,
extensively studied in [2], is not as simple as one would think at first glance. Indeed, it can
be achieved for a few special polarizations only, and for a particular choice of the variableX.
Generally speaking,X can either be the longitudinal ‘time’ variableτ , or some transverse
variablerξ + sη, r and s being real constants. In the latter case, known as ‘spatial’, the
reduction to NLS is only possible ifr and s take some special values, which describe
some particular choice of the modulation direction. From the physical point of view,r and
s determine the orientation of the planar waveguide relative to the crystallographic axes:
this orientation can only take a few special values. Neither is the polarization free: elliptic
polarizations are forbidden, as are circular polarizations in the anisotropic spatial case, while
the linear polarizations must make some fixed angle with the waveguide plane, determined
by the crystal symmetry. Furthermore, the coefficients of the NLS equation (16) depend
strongly on the considered case.

The systems (1)–(3) or (12)–(15) are thus(3+1)-dimensional generalizations of the NLS
equation, in the sense that they can be reduced to the latter, at least under some conditions,
despite the fact that conditions are very restrictive. However, it is very unlikely that these
systems, such as the NLS equation (16), possess the property of being completely integrable
by the IST method, even for very particular values of the coefficients. Indeed, completely
integrable systems are extremely rare in(3+ 1) dimensions. One has been discovered by
Leon [4], but it is radically different from the present one. It is essential to notice that these
systems are not the ‘classical’(3+ 1)-dimensional generalization of the NLS, the so-called
three-dimensional NLS equation, which is obtained from equation (16) by replacing the∂2

X

derivative by a three-dimensional Laplacian operator. The three-dimensional NLS equation
is known to only have unstable solutions [5], but this result is by no means valid for our
systems. The latter involve at least one degree of freedom more: the d.c. field.

3. The Davey–Stewartson equations

A system exists which is somehow analogous in its form to the previous ones, that describes
the evolution of a wave amplitude in(2+1) dimensions, and that is, like the NLS equation,
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Figure 1. A lump solution of the Davey–Stewartson system. Plot of the square modulus of the
fundamental amplitudeϕ versusX andY ∝ τ , for some given value of the propagation variable
ζ .

Figure 2. A localized soliton solution of the Davey–Stewartson system. The notations are the
same as in figure 1.

completely integrable by the IST method: the so-called Davey–Stewartson system. This
system was first derived by Davey and Stewartson in the frame of surface water waves
[6]. In the 1970s it was shown that this system is completely integrable through the IST
method, and the Hirota bilinear form was also found. AnN -soliton solution was obtained,
but, although the solitons can propagate in different directions, each of them is quasi-one-
dimensional. Lump, andN -lump solutions, which are solutions algebraically decaying in
all directions, were found in 1978 by Satsuma and Ablowitz, using a generalization of
the Hirota method [7] (figure 1). True solitons, i.e. solutions exponentially decaying in
all directions, have been found by Boitiet al, using the IST method [8–10] (figure 2).
Hietarinta and Hirota found a multiple localized soliton solution, which they call ‘N2-
dromion’, using the bilinear formalism [11]. It must be noticed that these localized solitons
or dromions assume nonvanishing boundary conditions at infinity for the auxiliary field
(denoted by9 in equations (17), (18) below). In the optical frame, this field describes
some solitary microwave interacting with the optical pulse. The physical interpretation of
the nonvanishing boundary conditions for9, and the question as to whether they may be
interpreted as a possibility to control the optical pulse through the microwave field, are left
for further investigation. An interesting review of the known properties of the system is
given in [12].
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The general form of the Davey–Stewartson system reads

i∂ζϕ + ε1∂
2
Xϕ + ∂2

Y ϕ + ε2ϕ|ϕ|2+ νϕ9 = 0 (17)

∂2
X9 + µ∂2

Y9 = ∂2
X|ϕ|2. (18)

The unknown functionsϕ and9 take respectively complex and real values.ν, µ are real
coefficients, andε1, ε2 = ±1. Every system with a form analogous to these equations (17),
(18), but with arbitrary coefficients, can be reduced to this form by means of a linear change
of variables. However, unlike the NLS equation, system (17) and (18) are not completely
integrable for any value of the coefficients, but only if the following conditions are satisfied:

ε1µ = ε2ν + 1 (19)

and

ε1µ = −1. (20)

If condition (19) only is satisfied, the system still possesses a Hirota bilinear form, and
admits exact one-solitary wave solutions. Condition (20) is required for the existence of
the two-solitary waves solution. It ensures also the complete integrability.

These integrability conditions are checked in the following way: considering the
equations solved in the quoted papers, conditions (19) and (20) are clearly sufficient. To
show that they are necessary requires some computation: first we write explicitly the Hirota
bilinear form for equations (17) and (18), as [7], and we see that condition (19) is necessary.
We then compute the one-soliton solution through the Hirota method, and notice that the
computation is valid, even if condition (20) is not satisfied. We then compute the two-
solitons solution, and condition (20) arises as a solvability condition. The computation is
lengthy but without difficulty: it follows strictly the known Hirota procedure [13].

Four cases exist for the signsε1 andε2. The caseε1 = 1 is referred to as DS I, and the
caseε1 = −1 as DS II, for both values ofε2. The existence of localized solutions depends
on the case. The solutions obtained initially were called soliton solutions, because they
have the same mathematical characteristics as the soliton solutions of the NLS equation,
with regard to the IST method, or to the Hirota bilinear method, but they are not localized
in space. They are in fact quasi-one-dimensional. Such solutions exist for the four sign
cases, which are all completely integrable. The so-called one-soliton solution is still valid
if condition (20) is not satisfied.

However, solutions decaying in all directions do not always exist. The DS II equations
with ε2 = −1, does not admit such solutions. It is regrettable, since it is the case found by
Davey and Stewartson in water theory, and it is still, to my knowledge, the only sign case
that has been derived in a physical frame. The lump solutions [7], that decay algebraically
in all directions, exist whenε1ε2 = −1, i.e. partly for DS I, and partly for DS II. The
exponentially decaying solutions, the true multidimensional solitons of Boitiet al exist
only for DS I (but for both(ε1, ε2) = (1, 1) and (1,−1)). The multidromion of [11] is
defined in the case(ε1, ε2) = (1,−1), for which lumps and ‘true’ solitons exist.

4. Reduction of the (3+ 1)-dimensional system to the Davey–Stewartson equations

4.1. Case of thē42m symmetry class

Let us look now for reductions of the systems (1)–(3) to the integrable DS equations. First
we seek for the ability of propagating a single polarization. We set

Ex = f cosθ Ey = f sinθ (21)
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θ is then the angle between the polarization direction and thex-axis, andf is some amplitude
to be determined. The spatial (relative to the variablesξ andη) partial differential operator
in the l.h.s. of equations (1) and (2) must be the same. This necessitates the restriction to
one spatial dimension defined by a variableX, which is

X = ξ cosθ + η sinθ (22)

or

X = −ξ sinθ + η cosθ. (23)

The first case corresponds to a modulation direction (that is the direction of the
planar waveguide) parallel to the polarization direction; and the second to a modulation
perpendicular to the polarization. We will write(X ‖ f ) or (X ⊥ f ) to label these two
cases. The spatial differential operator reduces toB∂2

X, with B = β (if X ‖ f ), or B = 1
(if X ⊥ f ).

Then we compare the coefficients off |f |2 in equations (1) and (2), and see that they
coincide only if the condition cos2 θ = sin2 θ is satisfied. Thusθ = ±π

4 . Equations (1)–(3)
are then reduced to the following ones:

[α∂2
X + ρ∂2

τ ]8′ = λ∂2
X|f |2 (24)

[2ik∂ζ + B∂2
X − kk′′∂2

τ ]f = D1+D2+D3

2
f |f |2+ Ef8′ (25)

(8′ = 8 if θ = π
4 , −8 if θ = −π4 ).

Equations (24), (25) can be reduced to the DS system (17), (18), by the following linear
change of variables:

t = ζ ε1B

2k
X = X Y = τ

√∣∣∣∣ B

−kk′
∣∣∣∣ (26)

ϕ = f
√
|D1+D2+D3|

2B
9 = 8′α

λ

|D1+D2+D3|
2B

. (27)

The constants are:

ε1 = sgn(−kk′′)
ε2 = −ε1 sgn(D1+D2+D3)

µ = ε1ρB

−kk′′α
ν = ε2

2λ

α

E

D1+D2+D3
.

(28)

The integrability condition (20) then reads

(no + ωn′o)2− n2
o(0)

noω(n′′oω + 2n′o)
n2
e(0)

n2
o(0)

B = 1. (29)

Recall that

B = n2
o

n2
e

(if X ‖ f ) or 1 (if X ⊥ f ). (30)

If this condition is satisfied, the other integrability condition (19) reads,

3[χ̂ (3)xxxx(ω, ω,−ω)+ χ̂ (3)xxyy(ω, ω,−ω)+ χ̂ (3)xyxy(ω, ω,−ω)+ χ̂ (3)xyyx(ω, ω,−ω)]

= 4

n2
e(0)

χ̂ (2)xzy(0, ω)χ̂
(2)
zxy(ω,−ω)+

4

n2
e(2ω)

χ̂ (2)xzy(2ω,−ω)χ̂(2)zxy(ω, ω). (31)
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Written under this form, the integrability condition can appear as an equilibrium between
the third-order nonlinearity and the cascaded second-order one. If condition (29) is not
satisfied, the less restrictive condition (20) for the existence of the bilinear form and of the
one-soliton solution (quasi-one-dimensional) writes,

ε1µ− 1= ε2ν = −1

1+K (32)

where−ε1µ is the l.h.s. of equation (29) andK is defined as:

K = n2
e(0)

2χ̂ (2)xzy(0, ω)χ̂
(2)
zxy(ω,−ω)

[
1

n2
e(2ω)

χ̂ (2)xzy(2ω,−ω)χ̂(2)zxy(ω, ω)−
3

4
(χ̂ (3)xxxx(ω, ω,−ω)

+χ̂ (3)xxyy(ω, ω,−ω)+ χ̂ (3)xyxy(ω, ω,−ω)+ χ̂ (3)xyyx(ω, ω,−ω))
]
. (33)

When conditions (29) and (31) are satisfied, the signsε1 and ε2 are important for
the existence of localized solitons. They exist for the DS I equation, that is, when
ε1 = sgn(−kk′′) = +1. That is, whenk′′ < 0: for anomalous dispersion. The sign
ε1ε2 determines the existence of lump solutions: using equation (31), we find that

−ε1ε2 = sgn(χ̂ (2)xzy(0, ω)χ̂
(2)
zxy(ω,−ω)). (34)

Thus if χ̂ (2)xzy(0, ω)χ̂
(2)
zxy(ω,−ω) is positive, the lump solutions exist.

4.2. Case of the 3m symmetry class.

The reduction of equations (12)–(15) to the Davey–Stewartson system (17) and (18) is not
as easy as the previous one. It is described with detail in appendix B. It is first seen that the
direction of the modulation (the variableX, physically the plane of the waveguide) must
be either parallel or perpendicular to the polarization (modulated by the functionf ). (As
an abbreviation we write, as above,(X ‖ f ) or (X ⊥ f ).) Second, it is seen that the angle
θ , that describes the direction of the polarization, can take only the values−π

2 , π
6 , 5π

6 (case
(X ‖ f )) or 0, 2π

3 , −2π
3 (case(X ⊥ f )). In both cases, the solutions form an equilateral

triangle, coherent with the trigonal 3m symmetry of the crystal.
The integral terms are removed without additional hypothesis, by introducing an

adequate auxiliary field8′, defined by equation (70). A remarkable simplification
(equation (73)) allows this removal. However, the auxiliary equation (74) takes the required
form (18) only if the following condition is satisfied:

χ̂ (2)yyy(0, ω)χ̂
(2)
zxx(ω,−ω)+ χ̂ (2)xzx(0, ω)χ̂ (2)yyy(ω,−ω) = 0. (35)

A linear change of the variables (given in appendix B, equations (79)–(83)) then reduces
the equations to the form of (17) and (18). The integrability conditions (19), (20) can then
be written. Condition (20) is the same as for the4̄2m symmetry class (equation (29)),
while the second condition (ε2ν = −2) takes a form somehow analogous to (31), but more
complicated:

1

n2
o(0)

(no + ωn′o)2− 2n2
o(0)

(no + ωn′o)2− n2
o(0)

χ̂ (2)yyy(0, ω)χ̂
(2)
yyy(ω,−ω)+

1

n2
e(0)

χ̂ (2)xzx(0, ω)χ̂
(2)
zxx(ω,−ω)

+ 1

n2
o(2ω)− n2

o

χ̂ (2)yyy(2ω,−ω)χ̂(2)yyy(ω, ω)+
1

n2
e(2ω)

χ̂ (2)xzx(2ω,−ω)χ̂(2)zxx(ω, ω)

= 3
2χ̂

(3)
xxxx(ω, ω,−ω). (36)
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The signε1 determines whether the obtained system is DS I or DS II, thus whether it
admits localized soliton solutions or not. This sign isε1 = sgn(−kk′′), as for the4̄2m class.
The existence of lump solutions is determined by the sign−ε1ε2, which reads, after some
algebra using the above integrability conditions:

−ε1ε2 = sgn

(
(no + ωn′o)2

n2
o(0)− (no + ωn′o)2

χ̂ (2)yyy(0, ω)χ̂
(2)
yyy(ω,−ω)

+n
2
o(0)

n2
e(0)

χ̂ (2)xzx(0, ω)χ̂
(2)
zxx(ω,−ω)

)
. (37)

If this quantity is positive, the equations admit lump solutions, algebraically decaying in all
directions.

4.3. Case of the 6mm symmetry class

The symmetry class 6mm, to which manyχ(2)-materials belong, has aχ(2)-structure of the
same form as the 3m class [14], but withχ̂ (2)yyy = 0, and the sameχ(3)-structure, also with
some zero coefficients. The derivations and discussion above concerning the 3m class is
valid for these materials, but is more simplified. Condition (35), which allows the reduction
of the evolution equations to the system of (17), (18), is always satisfied, and while the
integrability condition (29) is unchanged, the other one becomes

1

n2
e(0)

χ̂ (2)xzx(0, ω)χ̂
(2)
zxx(ω,−ω)+

1

n2
e(2ω)

χ̂ (2)xzx(2ω,−ω)χ̂(2)zxx(ω, ω) = 3
2χ̂

(3)
xxxx(ω, ω,−ω) (38)

which is very close to the condition (31) for the integrability in the case of the4̄2m symmetry
class.

5. Discussion of the integrability conditions

There are two integrability conditions: the first (29), concerns the dispersion relation and its
derivatives: the velocities, the second (31), (36) or (38) concerns the susceptibilities. The
condition (29) comes from (19), which states that the coefficient of∂2

Y (that is, of∂2
τ ) is

the same in both equations, with a sign change. It can be rewritten as

αkk′′ = ρB =
(

1

v2
− n

2
0(0)

c2

)
B. (39)

Leaving aside the termsα andB = 1 or β, that describe a distortion due to anisotropy,
this represents an equilibrium between the dispersion coefficientkk′′ and theρ coefficient.
ρ measures the difference between the group velocityv of the wave and the velocity c

no(0)
of the backscattered solitary wave, due to optical rectification. The dispersion coefficient
kk′′ measures similarly the difference between the group velocity of the wave, and those of
its side-bands. In both cases, these velocity differences give account for the strength of the
diffusive effect. Equation (39) thus represents an equilibrium between the kinetic terms of
diffusive effects for optical rectification on the one hand, and dispersion on the other.

The other condition can be written in a simpler form by using the so-called complete
symmetry property [14]. For thē42m and4̄3m classes, the condition (31) writes,

3[χ̂ (3)xxxx(ω, ω,−ω)+ χ̂ (3)xxyy(ω, ω,−ω)+ χ̂ (3)xyxy(ω, ω,−ω)+ χ̂ (3)xyyx(ω, ω,−ω)]

= 4

n2
e(0)

(χ̂ (2)xzy(0, ω))
2+ 4

n2
e(2ω)

(χ̂ (2)xzy(2ω,−ω))2. (40)
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For the 3m class, condition (36) reads,

1

n2
o(0)

(no + ωn′o)2− 2n2
o(0)

(no + ωn′o)2− n2
o(0)

(χ̂ (2)yyy(ω,−ω))2+
1

n2
e(0)

(χ̂ (2)xzx(ω,−ω))2

+ 1

n2
o(2ω)− n2

o

(χ̂ (2)yyy(ω, ω))
2+ 1

n2
e(2ω)

(χ̂ (2)xzx(ω, ω))
2 = 3

2
χ̂ (3)xxxx(ω, ω,−ω)

(41)

and for the 6mm class, condition (38) writes,
1

n2
e(0)

(χ̂ (2)xzx(ω,−ω))2+
1

n2
e(2ω)

(χ̂ (2)xzx(ω, ω))
2 = 3

2
χ̂ (3)xxxx(ω, ω,−ω). (42)

In every case, this describes an equilibrium between the third-order Kerr coefficient and
the cascaded second-order nonlinearities, through both second and zero harmonics. The
complete symmetry property allows us to solve condition (35), that is necessary for the
reduction of the(3+1)-dimensional system to the Davey–Stewartson equations, in the case
of the 3m and 6mm classes. This condition reduces to

χ̂ (2)yyy(ω,−ω) · χ̂ (2)xzx(ω,−ω) = 0. (43)

One of the factors must be zero. Ifχ̂ (2)xzx(ω,−ω) = 0, the integration condition (36) writes,

1

n2
o(0)

(no + ωn′o)2− 2n2
o(0)

(no + ωn′o)2− n2
o(0)

(χ̂ (2)yyy(ω,−ω))2+
1

n2
o(2ω)− n2

o

(χ̂ (2)yyy(ω, ω))
2

+ 1

n2
e(2ω)

(χ̂ (2)xzx(ω, ω))
2 = 3

2
χ̂ (3)xxxx(ω, ω,−ω). (44)

Else if χ̂ (2)yyy(ω,−ω) = 0,

1

n2
e(0)

(χ̂ (2)xzx(ω,−ω))2+
1

n2
o(2ω)− n2

o

(χ̂ (2)yyy(ω, ω))
2+ 1

n2
e(2ω)

(χ̂ (2)xzx(ω, ω))
2

= 3

2
χ̂ (3)xxxx(ω, ω,−ω). (45)

The above interpretation for these conditions is more obvious after this simplification. Note
that a case wherêχ(2)yyy is identically equal to zero is the case of the 6mm class, and as
above-mentioned, condition (35) is always satisfied for this class.

The last but not least observation is the sign condition for the existence of localized
solution. The condition for the existence of lump solutions isε1ε2 = −1, and this sign
is given by equations (34) or (37), depending on the symmetry class. Using the complete
symmetry property, we find thatε1ε2 is the sign of the opposite of some square. Thus
the lump solution always exist. This is valid for the classes4̄2m, 4̄3m, 6mm, and 3m
when condition (35) is solved bŷχ(2)yyy(ω,−ω) = 0. In the case of the 3m class, when this
condition is solved byχ̂ (2)zxx(ω,−ω) = 0, we see that,

−ε1ε2 = sgn(−ρ).
Thus lump solutions exist whenρ < 0, this condition appears also for the existence of
exponentially decaying solitons, discussed hereafter.

On the other hand, the DS I equation, that is the caseε1 = +1, admits localized soliton
solutions, exponentially decaying in all directions (and not only algebraically decaying as the
lump solutions). It has been seen above that this occurs for anomalous dispersion (k′′ < 0).
However, through condition (39),k′′ has the same sign asρ, thusε1 = +1 when,

v >
c

no(0).



Bidimensional optical solitons in a quadratic medium 5139

In this sign case, the emission of the slowly varying wave would be, for large enough input
power, a backscattered shock wave.

6. Conclusion

The partial differential system describing the evolution of a three-dimensional pulse in a
bulk sample of someχ(2)-material belonging to one of the symmetry classes4̄2m, 4̄3m,
3m or 6mm has been reduced to the(2+ 1)-dimensional Davey–Stewartson system. The
integrability conditions have been written down and discussed: the interaction with the
d.c. field can stabilize the waves when mainly two conditions are satisfied. The first
condition states that the kinetic factor for the efficiency of the backscattering of the d.c. wave
balances the dispersion; the second one that the sum of the squared second-order nonlinear
coefficients, corresponding to second-harmonic generation and optical rectification, must
equilibrate the third order Kerr coefficient. Further, there are two different sign conditions
that ensure the existence of localized solutions. The first one ensures the existence
of exponentially decaying solutions: proper bidimensional solitons. It is satisfied for
anomalous dispersion, which implies, because of the ‘kinetic’ integrability condition, that
the backscattered rectified wave is a shock wave. The second is the condition for the
existence of algebraically decaying solutions called lump: except for one special symmetry
case, this condition is always satisfied.
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Appendix A

In this appendix, we give the expressions of the coefficients of the system of (12)–(15) of
evolution equations for the 3m class. They read as follows:

κ2 =
−χ̂ (2)yyy(ω, ω)
n2
o − n2

o(2ω)
(46)

κ3 =
−χ̂ (2)zxx(ω, ω)
n2
e(2ω)

(47)

D1 = K1+K2+K3− 3ω2

c2
χ̂ (3)xxxx(ω, ω,−ω) (48)

D2 = 2K2+K3− 3ω2

c2
(χ̂ (3)xxyy(ω, ω,−ω)+ χ̂ (3)xyxy(ω, ω,−ω)) (49)

D3 = K1−K2− 3ω2

c2
χ̂ (3)xyyx(ω, ω,−ω) (50)

K1 = −2ω2

c2
χ̂ (2)xzx(2ω,−ω)κ3 (51)

K2 = 2ω2

c2
χ̂ (2)yyy(2ω,−ω)κ2 (52)
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K1 = 4ω2

c2n2
e(0)

χ̂ (2)xzx(0, ω)χ̂
(2)
zxx(ω,−ω) (53)

F1 = 2ω2

c2
χ̂ (2)yyy(0, ω) (54)

F2 = −2ω2

c2

vn2
o(0)

n2
e(0)

χ̂ (2)xzx(0, ω) (55)

F3 = 4ω2

c2

v

n2
e(0)

χ̂ (2)xzx(0, ω)χ̂
(2)
yyy(ω,−ω) (56)

λ1 = 2

n2
e(0)

χ̂ (2)yyy(ω,−ω) (57)

λ2 = 2

vn2
e(0)

χ̂ (2)zxx(ω,−ω) (58)

λ3 = −2

c2
χ̂ (2)yyy(ω,−ω) =

−n2
e(0)

c2
λ1. (59)

Appendix B. Reduction of the evolution equations to the Davey–Stewartson system
for the 3m class

First, we want to find the possibility of propagating a single polarization. We set

Ex = af Ey = bf (60)

and, as for thē42m class, the spatial differential operator in the l.h.s. of equations (12) and
(13) coincide only if we restrict the problem to one spatial variableX = rξ + sη, and if
the condition

r2− s2+
(
b

a
− a
b

)
rs = 0 (61)

is satisfied. Solving equation (61), we find thatr
s
= a

b
or −b

a
. Thus a

b
is real; we take

a = cosθ , b = sinθ , and we have either

X = ξ cosθ + η sinθ (if X ‖ f )
or (62)

X = −ξ sinθ + η cosθ (if X ⊥ f ).
This condition is clear, considering equations (12), (13), if we neglect the rotation of the
axes measured byθ . PropagatingEx alone is possible only if the term that depends onEy
disappears. The differential operator in this term is factorized into∂ξ ∂η, it cancels clearly
only if Ey does not depend either onη, or on ξ .

If condition (62) is satisfied, the l.h.s. of the two equations are identical, and then the
r.h.s. must also coincide. Due to the following symmetry properties of theχ(3)-tensor [14]:

χ(3)xxxx = χ(3)yyyy = χ(3)xxyy + χ(3)xyyx + χ(3)xyxy
we have: D2 + D3 = D1, and thus the terms proportional tof |f |2 are the same, and
so are the integral terms. The following terms remain to be considered in the r.h.s. of
equations (12) and (13), respectively:

F1(Ey0 + tanθEx0 )f
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and

F1(cotθEx0 − Ey0 )f.
These terms coincide only ifEx0 andEy0 are proportional, with a ratio equal to tan 2θ . We
thus set

Ex0 = sin 2θ8

Ey0 = cos 2θ8.
(63)

Then equations (12) and (13) become identical.
Now we turn to the auxiliary equations (14) and (15). We write them, using (63), and

see that their r.h.s. coincide if the condition

r = sin 2θ

s = cos 2θ
(64)

is satisfied. Then equations (14) and (15) reduce to

[α∂2
X + ρ∂2

τ ]8 = [λ1∂
2
X + λ2∂X∂τ + λ3∂

2
τ ]|f |2 (65)

and the coefficients of equations (12) and (13) are computed to yield:

[2ik∂ζ + B∂2
X − kk′′∂2

τ ]f = D1f |f |2+ F1f8+ F2f

∫ τ

∂X8+ F3f

∫ τ

∂X|f |2. (66)

We recall that:

B = β (if X ‖ f ) or 1 (if X ⊥ f ). (67)

Before we pursue the reduction of equations (65) and (66) to the Davey–Stewartson system
of (17) and (18), we look for the values of the angleθ that satisfy the previous conditions.
For the modulation perpendicular to the polarization(X ⊥ f ), the conditions are

r = sin 2θ = − sinθ and s = cos 2θ = cosθ. (68)

There are three solutions:θ = 0, 2π
3 , −2π

3 . For the the modulation parallel to the polarization
(X ‖ f ), we must have

r = sin 2θ = cosθ and s = cos 2θ = sinθ. (69)

There are also three solutions:θ = −π2 , π6 , 5π
6 .

Then we set:

8′ = F18+ F2

∫ τ

∂X8+ F3

∫ τ

∂X|f |2. (70)

Equation (66) reduces to:

[2ik∂ζ + B∂2
X − kk′′∂2

τ ]f = D1f |f |2+ f8′. (71)

Using equation (65), we compute the quantity [α∂2
X+ρ∂2

τ ]∂τ8′, and this yields the following
evolution equation for8′:

[α∂2
X + ρ∂2

τ ]∂τ8
′ = [G0∂

3
X +G1∂

2
X∂τ +G2∂X∂

2
τ +G3∂

3
τ ]|f |2 (72)

with:

G0 = αF3+ λ1F2 = 0. (73)

Thus we can integrate equation (72) once with respect toτ , and obtain

[α∂2
X + ρ∂2

τ ]8′ = [G1∂
2
X +G2∂X∂τ +G3∂

2
τ ]|f |2. (74)
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Equations (70) and (74) can now be reduced to the Davey–Stewartson equations (17), (18)
if G2 = 0. ComputingG2 = F1λ2+ F2λ3+ F3ρ, we obtain condition (35).

The constants in equation (74) read,

G1 = F1λ1+ F2λ2 (75)

G1 = 4ω2

c2n2
e(0)

[
χ̂ (2)yyy(0, ω)χ̂

(2)
yyy(ω,−ω)−

n2
o(0)

n2
e(0)

χ̂ (2)xzx(0, ω)χ̂
(2)
zxx(ω,−ω)

]
(76)

G3 = F1λ3 (77)

G3 = −4ω2

c4
χ̂ (2)yyy(0, ω)χ̂

(2)
yyy(ω,−ω). (78)

We put:

t = ζ ε1B

2k
X = X Y = τ

√∣∣∣∣ B

−kk′
∣∣∣∣ (79)

ϕ = f
√

1

B

∣∣∣∣G3

ρ
+D1

∣∣∣∣ (80)

8′ = 9

q
+ |ϕ|

2

r
(81)

with

q = ε1ε2
α

B
· G3+ ρD1

αG3− ρG1
(82)

r = −ε1ε2

B
· G3+ ρD1

G3
. (83)

The signsε1ε2 are defined by:

ε1 = sgn(−kk′′) (84)

as for the4̄2m class and

ε2 = −ε1 sgn

(
G3

ρ
+D1

)
. (85)

The introduction of a term proportional to|ϕ|2 in formula (81) allows the termG3∂
2
τ |f |2

in equation (74) to vanish.
The system then reduces to the Davey–Stewartson equations (17) and (18), with the

following value of the constants:

µ = ε1ρB

−kk′′α (86)

ν = ε2

α

ρG1− αG3

G3+ ρD1
. (87)

This allows us to write the integrability conditions (19) and (20), that yield conditions (29)
and (36).
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